首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   89篇
  国内免费   223篇
化学   1090篇
晶体学   10篇
力学   5篇
综合类   7篇
物理学   71篇
  2023年   6篇
  2022年   17篇
  2021年   20篇
  2020年   43篇
  2019年   22篇
  2018年   21篇
  2017年   29篇
  2016年   44篇
  2015年   32篇
  2014年   41篇
  2013年   103篇
  2012年   57篇
  2011年   65篇
  2010年   60篇
  2009年   43篇
  2008年   65篇
  2007年   62篇
  2006年   65篇
  2005年   43篇
  2004年   47篇
  2003年   53篇
  2002年   31篇
  2001年   29篇
  2000年   35篇
  1999年   16篇
  1998年   20篇
  1997年   10篇
  1996年   16篇
  1995年   14篇
  1994年   13篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1183条查询结果,搜索用时 46 毫秒
1.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
2.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
3.
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.  相似文献   
4.
New pyridinium-functionalized metalloporphyrins MEtPpBr4 (M = Zn2+, Co2+, Ni2+, Cu2+; EtPp = 5, 10, 15, 20-tetra(4-(3-(N-ethyl-4-pyridyl)pyrazolyl)phenyl)porphyrin) were synthesized as bifunctional catalysts for the cycloaddition reactions of epoxides and CO2. The effects of catalyst loading, CO2 pressure, reaction temperature and time on catalytic activity were investigated. ZnEtPpBr4 ( 1 ) and CoEtPpBr4 ( 2 ) exhibited efficient activities in the cycloaddition reactions of various epoxides with CO2 as at 120 °C under 2 MPa of CO2 pressure without solvent. Most of corresponding cyclic carbonates could be obtained in almost quantitative yields and > 99.9% selectivity with molar ratio of epoxide/catalyst 2222 after 8 hr of reaction.  相似文献   
5.
Abstract

Reaction between arylidenemalononitriles and dimethyl acetylenedicarboxylate in the presence of KSeCN at room temperature provided a simple and efficient one-pot route for the synthesis of highly functionalized selenophenes. The reaction is characterized by mild conditions, short reaction time, and tolerance to various functional groups.  相似文献   
6.
One of the commonly used methods to synthesize furans is the three-component reaction among aromatic aldehyde, arylamine, and acetylenedicarboxylate. The main advantages of this work are easy reaction work-up, short reaction time, high yield and easy recyclability, reusability of the catalyst. And also basalt fiber applications are surely innovative in many industrial and economic fields, because of its good mechanical, chemical and thermal performances.  相似文献   
7.
Anionic ring-opening polymerization (ROP) behavior of trans-cyclohexene carbonate (CHC) using metal alkoxides as initiators was investigated. As a result, lithium tert-butoxide-initiated ROP of CHC with a high-monomer concentration (10 M) at low temperature (−15 to −10°C) proceeded to afford a poly(trans-cyclohexene carbonate) (PCHC) without undesired side reactions such as mainly backbiting. The suppression of side reactions enables the control of the molecular weight (Mn = 2400–6100) of PCHC with low molar-mass dispersity values (Mw/Mn = 1.16–1.22). Furthermore, by increasing the feed ratio of the monomer to the initiator, the molecular weight increases proportionally, indicating a controllable polymerization. The results of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, a kinetic study, and a chain extension experiment suggested a living nature of this ROP using lithium tert-butoxide.  相似文献   
8.
采用不同老化温度(80、100、120和150℃)合成了一系列KIT-6载体,并通过浸渍法制备了相应的CeO_2/KIT-6催化剂。结合X射线衍射、N_2物理吸附、NH_3程序升温脱附、CO_2程序升温脱附、透射电子显微镜、傅里叶变换红外光谱和X射线光电子能谱等表征结果,详细考察了老化温度对KIT-6结构以及CeO_2/KIT-6催化剂直接催化CO_2和甲醇合成碳酸二甲酯(DMC)反应活性的影响。结果表明,不同老化温度下制备的KIT-6均保持其独特的三维孔道结构。随着老化温度升高,KIT-6比表面积先增大后减小,当老化温度为100℃时,KIT-6比表面积达到最大(683 m~2·g~(-1))。KIT-6较高的比表面积有利于提高CeO_2分散度,进而提高暴露的活性位点数量,催化活性随催化剂表面中等碱/酸性吸附位数量和Ce~(3+)含量的增加而逐渐提高。其中,CeO_2/100-KIT-6催化剂中CeO_2颗粒尺寸最小(5.9 nm),暴露的活性位数量最高,催化活性最佳。随后,考察了反应温度和压力对CeO_2/100-KIT-6催化活性的影响。随着反应温度提高,催化活性先升高后降低,当反应温度为140℃时,催化活性最高;且催化活性随反应压力的提高而逐渐增加。在反应温度为140℃、压力为6.8 MPa条件下,催化剂经6次循环后,DMC收率由15 mmol·g_(CeO_2)~(-1)逐渐降低至2.8 mmol·g_(CeO_2)~(-1),原因归结为反应过程中CeO_2纳米颗粒发生团聚,使暴露出的活性位数量减少。  相似文献   
9.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
10.
The activity and selectivity of heterogeneous catalysts can be significantly improved by dispersion of another active component in the metal substrate. The impact of Rh promoter on the formation of dimethyl carbonate (DMC) via oxidative carbonylation of methanol on Cu–Rh/AC (activated carbon) catalyst was investigated by density functional theory calculations. The most stable configurations of reacting species (CO, OH, CH3O, monomethyl carbonate, and DMC) adsorbed on the Cu0(zero‐valent copper)/AC and Cu–Rh/AC surfaces were determined on the basis of the calculated results. The reaction energy and activation energy of the rate‐limiting steps on the Cu–Rh/AC and Cu0/AC surfaces were compared. The activation energies of the rate‐limiting step of CO insertion into dimethoxide are 206.3 and 304.8 kJ mol?1 on the Cu–Rh/AC and Cu0/AC surfaces, respectively. The activation energies of the rate‐limiting step of CO insertion into methoxide are 78.5 and 92.7 kJ/mol on the Cu–Rh/AC and Cu0/AC surfaces, respectively. The calculated results indicate that the addition of Rh atom has a significant effect on decreasing the active energy the main pathway for DMC formation. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号